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ABSTRACT

Independent component analysis (ICA) has found wide application
in a variety of areas, and analysis of functional magnetic resonance
imaging (fMRI) data has been a particularly fruitful one. Maximum
likelihood provides a natural formulation for ICA and allows one to
take into account multiple statistical properties of the data—forms
of diversity. While use of multiple types of diversity allows for addi-
tional flexibility, it comes at a cost, leading to high variability in the
solution space. In this paper, using simulated as well as fMRI-like
data, we provide insight into the trade-offs between estimation ac-
curacy and algorithmic consistency with or without deviations from
the assumed model and assumptions such as the statistical indepen-
dence. Additionally, we propose a new metric, cross inter-symbol
interference, to quantify the consistency of an algorithm across dif-
ferent runs, and demonstrate its desirable performance for selecting
consistent run compared to other metrics used for the task.

Index Terms— Consistent run selection, independent compo-
nent analysis, fMRI analysis

1. INTRODUCTION

Independent component analysis (ICA) is a powerful method for
blind source separation (BSS) that extracts the underlying sources—
latent variables—through the assumption of statistical indepen-
dence, and by exploiting various statistical properties of these
sources, i.e., forms of diversity [1]. Due to the limited assump-
tions placed on the data, ICA has been applied to many biomedical
imaging applications, such as the analysis of functional magnetic
resonance imaging (fMRI) [1, 2] or electroencephalograph (EEG)
[3, 4] data.

The maximum likelihood (ML) principle provides a natural um-
brella for ICA under which most ICA algorithms can be derived
[1, 5, 6], also provides a number of advantages such as asymptotic
optimality as well as enabling use of all relevant forms of diver-
sity through appropriately selected models for the source probability
density function (PDF) [6]. Parameter estimation in ICA is generally
performed in two stages. The first stage consists of the estimation of
the source PDF while the second stage consists of maximization of
source independence through iterative estimation of the demixing
matrix. As additional forms of diversity are incorporated into the
algorithm, it becomes more flexible. However, this flexibility comes
at the expense of a more complicated cost function surface, affect-
ing robustness of iterative algorithms, e.g., to initializations, as in the
bias-variance trade-off in estimation theory. For example, the fixed
nonlinearity of Infomax [7] results in a smaller solution space than
ICA by entropy bound minimization (ICA-EBM) [8]—which uses
a flexible nonlinearity—and thus yields more stable solutions. But
unless fixed nonlinearities are justified through prior knowledge of
the sources, methods that use such nonlinearities will incur a bias
in proportion to the difference between modeled and true PDFs that
can be quantified with Kullback-Leibler (KL)-divergence [9].

*Qunfang Long and Chunying Jia contributed equally to this work.
**This work was supported in part by the grants NSF-CCF 1618551 and
NSF 1631838.

978-1-5386-4658-8/18/$31.00 ©2018 IEEE

2581

In applications to real world data, a solution that has been pro-
posed is to perform a number of independent runs and select a single
run among those as the final estimate. Most notably the ICASSO
approach includes visualization tools to study the consistency of an
algorithm and the solution space and selects a set of representative
components among those of multiple runs of an algorithm [10]. In
an application like medical image analysis obviously selection of the
most representative run is critical as each independent component
describes a brain network and is considered to be a “fingerprint” [11]
or a biomarker of disease [12]. ICASSO and later its modified ver-
sion m-ICASSO [13] to select a single run rather than just centroids
as in ICASSO, and more recently minimum spanning tree (MST)
[14] have been proposed. These are included in the group ICA of
fMRI toolbox (GIFT) [15] that has been widely used for ICA of
fMRI data [16].

As noted by the nonparametric, prediction, activation, influence,
reproducibility, and resampling (NPAIRS) framework in neuroimag-
ing [17, 18], both accuracy and prediction are key considerations
in algorithm performance. Thus, we first address the question of
whether how reliable consistent runs are in terms of accurate esti-
mation performance, and show that as one would expect, when all
model assumptions are well satisfied, the most consistent run is also
very likely to be the most accurate run. But if model mismatch oc-
curs, it is more likely for the most accurate run to be an outlier that
is not easily reproducible.

We study the trade-offs between estimation accuracy and al-
gorithmic consistency using fMRI-like data as well as simulated
data drawn from the generalized Gaussian distribution (GGD). Three
ICA algorithms, Infomax, ICA-EBM and SparselCA-EBM [19], are
used. Infomax, although not flexible like ICA-EBM, is the most
widely used algorithm in fMRI analysis [1]. It uses a fixed nonlin-
earity, which is a good match for fMRI sources of interest and is also
the default option in GIFT. ICA-EBM, on the other hand, is flexible
in terms of matching the underlying source PDF and has been shown
to produce desirable results for fMRI analysis [20], hence can bet-
ter maximize independence when the sources are truly independent.
SparseICA-EBM, an extension of ICA-EBM, incorporates sparsity
as an additional form of diversity and thus can obtain meaningful de-
compositions even when the assumption of independence is not true
in a strict sense. We study the performance of m-ICASSO and MST,
and introduce a new practical metric, cross inter-symbol interference
(cross-ISI) to evaluate consistency and to select a single run in real
world applications where the ground truth is not available. We show
its desirable performance and computational efficiency enabling sig-
nificantly larger number of runs than m-ICASSO and MST.

2. METHODS

2.1. ICA

Let N statistically independent latent sources s(v) = [s1(v),
..,sn(v)]" be mixed through an unknown invertible matrix
A € RY*¥ 50 that the mixtures x(v) = [z1(v), ..., zn(v)] T, are
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obtained through the linear model
x(v) = As(v),v=1,---,V

where v denotes the discrete sample index and (-) " the transpose.
The goal of ICA is to estimate a demixing matrix W & RNV*V
such that to produce source estimates y = [y1,. .. ,yN]T given by
y(v) = W(v)x(v). In what follows we drop index v for simplicity.

ICA can be achieved by minimizing the mutual information (MI)
among the underlying sources. The MI cost function defined as the
KL-divergence between the joint source density and the product of
the marginal estimated source densities is given by

T(W) = H(ya) — log | det(W)| — H(x), (D

where H (-) is the differential entropy and H (x) is a term indepen-
dent of W and can be ignored. Minimization of MI of the esti-
mated sources can be shown to be equivalent to the ML function
when the model PDF and the true PDF coincide for each source [1].
Let ps,, (yn) denote the estimated PDF of the nth source. Then the
differential entropy is given by

H(yn) = —f(ps, (Un); Ds, (Yn)) — E{log ps, (yn)}, (2

where f(ps,, (Yn), Ps,, (yn)) denotes the KL-divergence between the
nth estimated and the true source PDF. Once the model deviates from
the true PDF, a bias is introduced in the estimate of the demixing
matrix.

The differences in the assumed latent source models in the ML
formulation lead to differences in the separation performance of ICA
algorithms. Infomax, the most widely used algorithm for fMRI anal-
ysis, uses a fixed nonlinearity [7] which is a good match for a specific
super-Gaussian distribution. Due to use of fixed nonlinearity Info-
max results in a small solution space. However, its performance
suffers when the true density deviates from this assumed model.
ICA-EBM provides flexible density matching through the use of
four measuring functions based on the maximum entropy princi-
ple [8] leading to smaller bias, i.e., making it more likely to have
F(®sn(Yn), Ps, (Yn)) — 0O, but at the expense of a relatively large
solution space. Another very recent algorithm, SparseICA-EBM al-
gorithm, inherits the advantage of ICA-EBM, namely its flexibility
with enhanced performance due to the exploitation of the sparsity of
the underlying sources through a regularization parameter A that in-
troduces sparsity into source estimates [19, 21]. The assumption of
ICA that the underlying sources are statistically independent can be
too restrictive an assumption in practice [19]. Incorporating relevant
prior information, e.g., sparsity, can relax the independence assump-
tion, resulting in better match to the underlying problem. The intro-
duced regularization term also helps to shrink the solution space for
ICA-EBM, especially with increasing .

2.2. Algorithmic consistency

Most ICA algorithms derived under the ML umbrella are of iterative
nature, and especially with the use of more flexible density models,
solutions might be significantly different depending on the initializa-
tion. Thus selecting the solution for further analysis is an important
problem, which has been addressed for the application of ICA to
analysis of fMRI data. There have been two solutions proposed for
this task, m-ICASSO [13] and MST [14]. In both cases, ICA al-
gorithm is run R times using different initializations and in the sec-
ond stage, different procedures are employed to identify the final run
that will be used as the most consistent one and for further analysis,
e.g., to determine biomarkers of disease between patient and healthy
groups of subjects.

2.2.1. M-ICASSO and MST

To study the reliability of estimates from multiple ICA runs,
ICASSO is introduced as an explorative visualization method [10].
This method groups all N x R estimates into clusters where N is
the total number of components estimated in each of R runs. The
reliability of an estimate is quantified by the quality, say compact-
ness, of the cluster to which it is assigned. In ICASSO, the centroid
estimates of all given clusters are put together and used for post
analysis. This breaks the connection to the linear mixing model
assumption in ICA since the centroids have not been generated
from the same run and thus the uniqueness of the decomposition is
violated. This is not practical for applications such as the analysis
of fMRI data where access to both spatial and temporal estimated
components is important. Therefore, in [13], ICASSO is modified
to select a given run based on Q-index, which is a measure of the
closeness of a single run to the centroids. We refer to this method
as modified ICASSO (m-ICASSO). To calculate the Q-index, m-
ICASSO takes into account the clusters that are identified according
to their size and compactness using a given threshold. This makes
the procedure somewhat subjective. Additionally, m-ICASSO does
not allow for all the estimates of a given run to be included in the
computation of the ()-index. Because if two or more components of
a run are grouped into the same cluster, only the component that is
most similar to the cluster’s centroid is included in the computation.
This leads loss of information.

In contrast, MST identifies a central run according to the align-
ment cost of all the components [14, 22]. Components of all the
other runs are aligned with respect to those of the central run with
the minimum cost. Afterwards, a one-sample ¢-test is performed
for each type of component across all R runs, producing a 7'-map.
These T-maps are good delineation of the functional networks thus
are especially practically useful for fMRI analysis. The final run is
selected as the one whose components are the most correlated to the
T-maps. MST successfully addresses the previous issues. However,
the use of T-maps limits its application to only fMRI and similar
applications.

The consistency of the final run selected by m-ICASSO and
MST has not been well studied, and both procedures as we highlight
in the results section are computationally costly.

2.2.2. Cross-1S1
ISI is a frequently used global metric for performance evaluation
when the ground truth is available. It is defined as:

N N
1S16) = s 30 (20 el
NN 1) 2= \ 2= maxljgarl]
N N
2N(N = 1) = \ = maxg|gim||

where G = AW with elements denoted as ¢y, where A is the
true mixing matrix and W is the estimated demixing matrix. If
W is perfectly estimated, G is identity subject to permutation and
scaling ambiguities, thus yielding zero ISI which indicating per-
fect separation. Therefore, the smaller the ISI, the closer the es-
timates are to the ground truth. Motivated by ISI, the consistency
of the components from one run to another can be measured using a
global metric, cross-IST, which we define as ISI% = ISI(Pij), where
PY = A;W; with elements denoted as p%,,, where A; = W;*
is the inverse of the demixing matrix of the ith run and W is the
demixing matrix of the jth run. To measure the consistency of a
single run to all the other runs, the cross-ISI of the current run is
generated by averaging all its pairwise cross-ISI:
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Fig. 1. Scatter plot (left) and contour map (right) for cross-ISI and ISI pairs for 500 runs of each algorithm using GGD data sources. Also
plotted are consistent runs selected by m-ICASSO (orange), MST (cyan) and cross-ISI (magenta).

R
ISIS = ﬁ > ISK; 4)

The calculation of cross-ISI is an al]ggtl)'rja?é function of the demixing
matrix estimated from ICA, which makes it an objective measure
and very efficient computationally.
3. EXPERIMENT AND NUMERICAL RESULTS

3.1. Simulation set up

For the first set of experiments, simulated sources, each of which
is distributed according to a GGD, are generated. GGD is a uni-
modal distribution and the shape parameter, denoted as 8 controls
the peakedness and spread of the distribution. We use the defini-
tion in [23], such that when 0 < 8 < 1, the distribution is super-
Gaussian and a better match for fMRI sources. This selection also
makes sure that Infomax, which uses a fixed nonlinearity that implies
a specific super-Gaussian density model, can handle it. In our exper-
iments, we study this range and here report results for two represen-
tative values, 8 = 0.2 and 0.6. In each scenario with the given shape

parameter, 10 sources are generated such that Sg € R1OX10% yith
10000 samples. The mixing matrix A € R*®*1? is randomly formed
and selected as well-conditioned, such that the condition number is
between 10 and 40.

For the second set of experiments, we use fMRI-like data using
the SimTB toolbox [24, 25], the toolbox employs different param-
eters to control the generation of 100 x 100 2D fMRI-like spatial
maps and their corresponding time courses. A total of 10 spatial

.. 4
maps are selected as original sources (S; € R'®*19") and the as-
sociated time courses (Ts € R?%0%1%) are generated, resulting in

the mixture X € R260X104. In this experiment, only one realiza-
tion is used, and no noise is added to the data X;. The first step in
processing the fMRI-like data consists of the application of princi-
pal component analysis (PCA). Since 10 sources are generated, the
dimension of X is reduced from 260 to 10.

Two parameters of SparselCA-EBM, sparsity parameter, A, and
smoothing parameter, e, are set for each dataset separately by making
sure that the weight between the sparsity and independence matches
the source model. For the GGD experiment, parameters are set as
A = 10 and € = 1072 and for SimTB generated data, parameters
are set as A = 10* and € = 10%. Estimation accuracy is measured
by ISI defined in (3).

3.2. Simulated data

Each of the three ICA algorithms, Infomax, ICA-EBM, SparseICA-
EBM, is run R=500 times for the GGD experiment. Infomax uses
the hyperbolic tangent function which implies a PDF that is propor-
tional to sech(x) for the underlying sources. It can be shown that for
sources that come from a GGD, 5 = 0.6 is the closest to the PDF
implied by the Infomax nonlinearity when values of /3 are investi-
gated in increments of 0.1. The scatter plot and contour map of the

cross-ISI and ISI pairs for the 500 runs are displayed in Fig. 1. We
see that solution from Infomax is more compact than ICA-EBM as
it uses a fixed nonlinearity, and its bias is smaller when 5 = 0.6, as
for this value, its nonlinearity is a good match to the source distri-
bution. However, when 8 = 0.2, Infomax performs worst in terms
of ISI due to the bias introduced as discussed in (2). The solution of
SaprseICA-EBM is also more compact than ICA-EBM since the so-
lution space of SparselCA-EBM is shrunk compared to ICA-EBM.
When 5 = 0.6, SparseICA-EBM performs worst since the sources
are less sparse and its performance is desirable for 3 = 0.2. Addi-
tionally, we verified that there is a tight linear relationship between
the cross-ISI and average cross correlation across estimates—global
vs pairwise measures of consistency. Average cross correlation cal-
culation is similar to that of cross-ISI but is more costly as it requires
alignment of components.

For Infomax and SparselCA-EBM, the scatter plots show that
all the solutions are close to each other providing similar accuracy.
Even for ICA-EBM, whose solution space is relatively larger, the
consistent runs are good representation of the average accuracy level
of the algorithm. From the contour plots, we can see that the run
with lowest ISI is usually far away from the run that is the most
consistent, which means that it is not a good representation of the
average performance of an algorithm. Consequently, it is less likely
to be reproducible. This suggests that instead of finding the most
accurate run—which is not an easy task in applications to real data
where there is no ground truth—finding a run that is most consistent
provides satisfactory performance in this case, especially when the
overall model match is good.

In Fig. 1, the final runs selected from m-ICASSO, MST and
cross-ISI are denoted by orange, cyan and magenta, respectively.
Note that for cross-ISI, a lower value implies greater consistency.
It shows that MST sometimes finds a run that is far away from the
most consistent one, such as the case for SparselCA-EBM. In most
of the scenarios, ISI of the consistent runs is close to the average.
This demonstrates that the most consistent run is a good representa-
tion of the average algorithmic accuracy. Additionally, when model
matches the true source PDF, the accuracy level of the consistent
runs selected by three methods are close to each other. Sometimes
cross-ISI yields a little higher accuracy while m-ICASSO yields
higher accuracy in some of the cases. On the other hand, when there
is a model mismatch, i.e., 3 = 0.2 for Infomax and 5 = 0.6 for
SparseICA-EBM, cross-ISI stands out and yields the most reason-
able run. Additionally, for SparselCA-EBM (whose solution space
is smaller, while also containing outliers), cross-ISI, which directly
emphasizes the consistency, performs very well.

Cross-ISI is also computationally inexpensive. Computational
time as in this case for 500 runs for the GGD experiment for cross-
ISIis 15.72 seconds, which is significantly less than 974.01 seconds
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Fig. 2. Contour maps for cross ISI and ISI for 500 runs of each algorithm and the spatial maps of the run selected by cross-ISI. Also plotted
are consistent runs selected by m-ICASSO (orange), MST (cyan) and cross-ISI (magenta).

Computational time (s)
Data
m-ICASSO| MST |cross-ISI
GGD 974.01 912.04 15.72
fMRI-like | 1.07x10% |1.10x10%| 35.98

Table 1. Comparison of the computational time used by each con-
sistent run selection method.

for m-ICASSO and 912.04 seconds for MST, as shown in Table. 1.
It illustrates the potential of cross-ISI to accelerate the analysis when
applied to real fMRI data or other problems.

3.3. FMRI-like data

Ten original components selected from SimTB toolbox are shown
in Fig. 2(b), including fronto-parietal (F-P), default mode network
(DMN), motor, frontal and visual components. Similar to the first set
of experiments, we perform 500 runs on the mixture of these sources
using each algorithm, and stable run selection is used to identify the
most consistent run. Fig. 2(a) shows that the estimation accuracy of
consistent runs selected by three algorithms is no less than the aver-
age level for ICA-EBM and SparseICA-EBM. For Infomax, the ISI
of the consistent run selected by m-ICASSO and cross-ISI is a little
higher than the average. This is somewhat acceptable, as the solution
space of Infomax is very tight. As a measure of the independence of
estimated components, we also evaluate the MI reduction (MIR) be-
tween the recovered components and the mixture, and mean remain-
ing pairwise MI (PMI) between pairs of the components [4]. Results
show that for ICA-EBM and SparselCA-EBM, ISI shows linear re-
lationship with both MIR and PMI suggesting use of these measures
for real data when there is no ground truth. Additionally, the MIR
of the selected consistent runs using all three methods are virtually
the highest among all runs, and their PMI are nearly the lowest for
the two ICA algorithms, ICA-EBM and SparselCA-EBM. Computa-
tional time of these three consistent run selection methods are shown
in Table. 1. Again cross-ISI is much more efficient than the other
two.

Fig. 2(c)-(e) show the spatial maps of the consistent run with
the lowest cross-ISI for three ICA algorithms. Components of the

run selected for Infomax and SparseICA-EBM are very close to the
ground truth, with average spatial correlation values of 0.996 and
0.989, respectively. For the case of ICA-EBM, we observe that there
are some components merged with each other, such as the first com-
ponent with the third and fourth, the second with the ninth and tenth.
From the PMI and pairwise correlation of the original 10 sources,
we noted that the first, third and fourth components are not fully in-
dependent, as well as the second, ninth and tenth with higher PMI
values compared to other pairs while the values of the other sources
are much closer to zero. Hence, ICA-EBM seems to perform worst
in terms of estimation accuracy as it is the only algorithm that max-
imizes independence by decreasing the bias in terms of KL diver-
gence, as discussed in (2). Infomax and SparseICA-EBM on the
other hand introduce a bias, which in this case enables a better model
match as the sources are not fully independent but are all sparse. Due
to space limitation we do not display the spatial maps selected by
m-ICASSO and MST. However, they have been inspected and are
similar to those shown in Fig. 2(c)-(e).

4. CONCLUSION

In this paper, trade-offs between the estimation accuracy and algo-
rithmic consistency are explored in terms of model match. A new
consistency measure, cross-ISI, is proposed to quantify algorithmic
consistency and select a run among multiple ones in real world appli-
cations. Experimental results suggest that when modeling assump-
tions are met, the run selected by cross-ISI is a good representa-
tion of algorithmic accuracy. When we deviate from modeling as-
sumptions, cross-ISI provides a more reliable selection than both
m-ICASSO and MST, both widely used in fMRI analyses, mak-
ing cross-ISI an attractive metric for this application among oth-
ers. Furthermore, calculation of cross-ISI is an algebraic function
of the demixing matrix estimated from ICA, making it suitable for
a wide array of problems besides fMRI analysis and ideal for online
and real-time applications, significantly reducing the cost of multi-
ple runs. When working with real data, typically 10-20 independent
runs are performed [13, 14] as both m-ICASSO and MST are com-
putationally costly, with use of cross ISI this number can be signif-
icantly increased resulting in more reliable estimates for the subse-
quent analyses.
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